Dr. Ammar Alhaj

 Dr. Ammar Alhaj, Machine Learning (AI) instructor

PhD in Engineering Informatics from Tomas Bata University in Zlin (5 years), Czech Republic.
My thesis was: Fault Tolerance for Big Data Scientific Workflows in Cloud Computing Environments.

LICENSES & CERTIFICATIONS

1-Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization – DeepLearning.AI

The certification issued Jan 2021 -Credential ID: TALS96R2M8AA

2-Applied Machine Learning in Python – Michigan University

The certification issued Aug 2020 – Credential ID: MA4PTU9JV698

3-Neural Networks and Deep Learning – DeepLearning.AI

The certification issued Sep 2020 – Credential ID ZJLB72TXAAVE

4-Big Data Modeling and Management Systems – California, San Diego University

The certification issued Jun 2020 Credential ID: TZTJ3MJ75H7U

5-Introduction to Data Science in Python- Michigan University

The certification issued Jun 2020-Credential ID HNCZCECD8Z78

6-Machine Learning With Big Data – California, San Diego University

The certification Issued Jul 2020- Credential ID E9SFWJULJL73

7-Using Databases with Python – Michigan University
The certification issued Jul 2020 – Credential ID: DPBCL48SAPJJ (

8-Using Python to Access Web Data- Michigan University

The certification issued Jun 2020-Credential ID: CJG7HGTEGJ93

9-Managing Big Data with MySQL-Duke University

The certification Issued Jul 2020-CredentialID: QCYK3V6XEU7L

10-Google Cloud Platform Fundamentals: Core Infrastructure – Google

The certification Issued Jun 2020 – Credential ID: CPD5RFPXEBQ7

11-NLP: Twitter Sentiment Analysis- Guided project – Coursera

The certification or issued Oct 2020 -Credential ID: WWKLB3ZY8XGR (

12-Analyze Text Data with Yellowbrick- Guided project – Coursera

The certification or issued Oct 2020-Credential ID: QLQF5CF3NK2A

13-Mining Data to Extract and Visualize Insights in Python – Coursera

The certification or issued Sep 2020-Credential ID: 4ZMA6UH2KBEY

14-Mining Quality Prediction Using Machine & Deep Learning – Coursera

The certification or issued Sep 2020-Credential ID: F58W6YYS3QTW

15-Introduction to Topic Modeling for Business – Coursera

The certification or issued Oct 2020-Credential ID: PEJ3AYFRQQDH (

16-Perform Sentiment Analysis with Scikit-learn – Coursera

The certification or issued Oct 2020-Credential ID:  XSBMJXGFRLGG

17-Sentiment Analysis with Deep Learning using BERT – Coursera

The certification or issued Oct 2020-Credential ID:  HVP9LSGXKJYQ

18-TensorFlow for AI: Computer Vision Basics – Coursera

The certification or issued Oct 2020-Credential ID:  8UY98MRD8T4L

19-Visualizing Citibike Trips with Tableau – Coursera

The certification or issued Oct 2020-Credential ID: 8UG87Y496STP

JOB EXPERIENCES

Tomas Bata University – Czech Republic

My main responsibility as a postdoc is to work with a research group to develop a deep learning model to classify plant diseases.

KAGGLE (Part- time)

  • Kaggle Kernel Expert: Highest rank 316 out of 161724 global users, created 15 kernels with 1 Gold medal and 4 Bronze medals with a total of nearly 276 upvotes and 1186 forks.
  • Data Scientist Competitor:
  1. Top 9% (Solo Bronze Medal) in Riiid Answer Correctness Prediction Competition.
  2. Top 20% in Cassava Leaf Disease Classification Prediction Competition.

Data Science & Machine Learning

  • Fluency in Python with working knowledge of machine learning & Statistical libraries.
  • Good experience in data exploratory, data visualizations, feature selection, data analysis using different techniques in Python.
  • Strong experience working with different data types and different formats such as CSV, JSON, and XML
  • Good experience in Data preparation, which includes cleaning and transforming raw data prior to processing and analysis.
  • Strong Knowledge machine learning library Scikit-Learn, NumPy, Pandas, Seaborn, and OpenCV.
  • Experience in processing real data and building ML pipelines end to end.
  • Solid understanding and use of Machine Learning techniques and algorithms like Random forest, Gradient boosting, CatBoost, Light GBM, XGBoost to predict the outcomes.
  • Strong experience working with and deep learning frameworks: Tensorflow, Keras, and PyTorch.
  • Experience in build and training CNN, U-Net, Mask R-CNN, and Faster R-CNN models using deep learning framework such as Keras and Pytorch.
  • Experience with image recognition, classification, and segmentation using computer vision techniques.
  • Good understanding of model validation processes and optimizations.
  • Experience applying machine learning techniques to NLP problems.
  • Educational and professional experience in applying Machine Learning and Data Mining techniques to real problems with copious amounts of data.

Web development

  • 18 years of professional experience in software design, development, debugging, deployment, documentation and testing of Client–Server and Web based Applications.
  • Well-versed in business process modeling, business improvement, business system analysis, and developing responsive websites using C#, ASP.NET, MVC, JQuery, and SQL skills.
  • Designing and developing reports by SAP Crystal Reports.
  • Extensive Knowledge with .NET Framework (All versions).
  • Highly experienced with SQL Server and MySQL.
  • Extensive Knowledge in Visual Studio (All versions).

Technical SKILLS

  • Python, Java, C, C++, and C#.
  • NET, ASP, JavaScript, Web services, JQuery, AJAX, HTML, DHTML, CSS, CSS3, XML and ADO.NET.
  • SQL Server and MySQL.
  • Crystal Report.
  • Jupyter, Tensorflow, Keras, and PyTorch.

AWARDS

Award Sheikh Salem Al-Ali Al Sabah Informatics. (2017)

  • Project name: Mubader E-learning project – http://sch-kw.com/.

2-Award of Kuwait Foundation for the Advancement of Sciences – (2015)

  • Award name: Kuwait E-Content Award.
  • Project name: capital educational website – https://www.capital.edu.com/.

PUBLIATIONS

  1. Ali, A. A., Vařacha, P., Krayem, S., Žáček, P., & Urbanek, A. (2018). Distributed data mining systems: techniques, approaches and algorithms. In MATEC Web of Conferences. EDP Sciences.
  2. Ali, A. A., Vařacha, P., Krayem, S., Jašek, R., Žáček, P., & Chramcov, B. (2018). Modeling Of Distributed File System In Big Data Storage By Event-B. In MATEC Web of Conferences. EDP Sciences.
  3. Ali, A. A., Jasek, R., Krayem, S., Chramcov, B., & Zacek, P. (2018, April). Improved Adaptive Fault Tolerance Model for Increasing Reliability in Cloud Computing Using Event-B. In Computer Science On-line Conference (pp. 246-258). Springer, Cham.
  4. Capek, P., Jasek, R., Kral, E., Ali, A. A., & Senkerik, R. (2018, December). Cross Platform Configurable ERP Framework. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1456-1457). IEEE.
  5. Krayem-Ivo, A. A. A. S., Alarsan-Mohammad, L. N. C. M., & Awwama, K. E. Solving Np-Complete Problem Using Formal Method Event-B.
  6. Ali, A. A., Krayem, S., Chramcov, B., & Kadi, M. F. (2018). Self-Stabilizing Fault Tolerance Distributed Cyber Physical Systems. Annals of DAAAM & Proceedings, 29.
  7. Ali, A. A., Jasek, R., Krayem, S., & Zacek, P. (2017, April). Proving the Effectiveness of Negotiation Protocols KQML in Multi-agent Systems Using Event-B. In Computer Science On-line Conference (pp. 397-406). Springer, Cham.
Layer 1
Login Categories
This website uses cookies and might ask for your personal data to enhance your browsing experience.